
Communication

Trans-dioxo Manganese(V) Porphyrins

Ning Jin, Mohammed Ibrahim, Thomas G. Spiro, and John T. Groves

J. Am. Chem. Soc., 2007, 129 (41), 12416-12417• DOI: 10.1021/ja0761737 • Publication Date (Web): 21 September 2007

Downloaded from http://pubs.acs.org on February 14, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 12 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

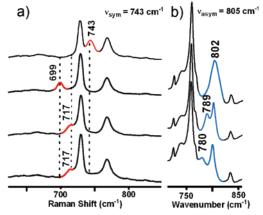
Published on Web 09/21/2007

Trans-dioxo Manganese(V) Porphyrins

Ning Jin, Mohammed Ibrahim,§ Thomas G. Spiro,*,§ and John T. Groves*

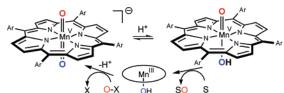
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Received August 15, 2007; E-mail: jtgroves@princeton.edu


Transition metal oxo-species have been the focus of extensive studies because of their relevance to the redox biochemistry of dioxygen as well as myriads of oxidative catalytic processes. High valent oxo-manganese complexes have been described for porphyrin,¹ salen,² corrole,³ corrolazine,⁴ and non-heme systems.⁵ The $O=Mn^V$ moiety has been suggested in the photosynthetic water oxidation process,⁶ and a bridged Mn^V porphyrin dimer has recently been demonstrated to oxidize water into dioxygen.⁷

We have previously described low-spin d² oxomanganese(V) porphyrin complexes that display an extraordinary range of reactivity toward oxo-transfer as a function of prototropic equilibria involving the axial ligand.⁸ A prediction of that work was that oxo-aqua and oxo-hydroxo-manganese(V) intermediates are reactive oxidants while the stable species observed at high pH are trans-dioxo complexes. Here we provide the first definitive spectroscopic evidence for *trans*-dioxomanganese(V) porphyrins [O=Mn^V=O]. Further, we show that protonation of these species affords the reactive intermediates usually associated with these catalytic systems (Scheme 1).

Oxidation of Mn^{III}-5,10,15,20-tetramesitylporphyrin (Mn^{III}TMP) with 1.2 equiv of H₂O₂ in CD₃CN/CD₂Cl₂ containing excess tetrabutylammonium hydroxide (TBAH), in a variation of the conditions reported previously by us^{8d} and recently by Nam et al.,⁹ vielded a solution with sharp, well-resolved ¹H NMR resonances typical of a diamagnetic oxoMn^V complex (Figure S1). Intriguingly, the ortho-methyl resonance of the mesityl substituent appeared as a sharp singlet at δ 1.87, in contrast to the *two*, well-resolved singlets observed for the isoelectronic oxoCrIVTMP and nitridoMnV-TMP.¹⁰ The equivalence of the ortho-methyl protons in Mn^VTMP could result from a compound of C_{4v} symmetry with rapid axial ligand interchange, such as by oxo-hydroxo tautomerism.¹¹ Alternatively, a D_{4h} symmetric compound with identical axial ligands, such as a trans-dioxo arrangement [O=Mn^V=O], would also display these features. Significantly, the ortho-methyl signal remained sharp with no evidence of exchange broadening even at -20 °C. This observation suggests either that oxo-hydroxo tautomerism is unusually fast, even at this low temperature in an aprotic medium, or that the trans-dioxo formulation is the correct one.

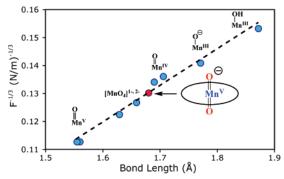

Confirmation of the D_{4h} symmetry of the oxidized Mn^V porphyrin species and assignment of the structure as a *trans*-dioxoMn^V complex were made on the basis of the Raman and IR spectra. Figure 1a shows Raman spectra of Mn^V tetrapentafluorophenylporphyrin (Mn^VTPFPP) generated by oxidation of Mn^{III}TPFPP with H₂O₂. Oxidation with H₂¹⁸O₂ in H₂¹⁸O caused the band at 743 cm⁻¹ to shift to 699 cm⁻¹. This isotopic shift (44 cm⁻¹) is considerably larger than expected for a simple, terminal Mn=O stretch (33 cm⁻¹) but is close to the calculated value for a *linear triatomic* model, ¹⁸O=Mn=¹⁸O (42 cm⁻¹).

Oxo-hydroxo tautomerism was introduced by Meunier to explain the pattern of ¹⁸O-exchange into oxidized substrates mediated by water-soluble manganese porphyrins.¹¹ We utilized this concept to generate *half-labeled* dioxo-Mn^V porphyrins. Raman spectra for

Figure 1. (a) RR spectra of $[Mn^V(O)_2TPFPP]^-$ generated with (from top to bottom) 1.2 equiv H_2O_2 in H_2O_1 in H_2

Scheme 1

Mn^VTPFPP prepared using either H₂¹⁶O₂ in H₂¹⁸O or H₂¹⁸O₂ in H₂¹⁶O showed identical features (Figure 1a): the 743 cm⁻¹ band shifted to 717 cm⁻¹, in good agreement with the 22 cm⁻¹ shift predicted for ¹⁶O=Mn=¹⁸O. The 717 cm⁻¹ band retained its intensity during the RR experiments (~10 min), indicating that oxygen exchange with bulk water is very slow. Moreover, the v_{sym} (O=Mn^V=O) band is very sharp, with a half width of only 9 cm⁻¹ that was unaffected by D₂O. By contrast, [O=Mn^{IV}(OH)-TDMImP]³⁺¹² has v_{sym} at 731 cm⁻¹ and a half width of 50 cm⁻¹ that sharpened to 25 cm⁻¹ in D₂O (Supporting Information, Figure S7). We have previously ascribed the broadening of HO–M=O Raman bands to a combination of M–OH hydrogen bonding and oxo-hydroxo tautomerism,¹³ features that are absent in [O=Mn^V=O].


The symmetrical O=Mn^V=O stretching frequencies for four other Mn^V porphyrins were also assigned (Table 1). In each case we were able to prepare the respective half labeled and fully labeled dioxo complexes. The v_{sym} (O=Mn^V=O) values (741-744 cm⁻¹) are comparable to v(Mn^{IV}=O) in oxoMn^{IV} porphyrins such as O=Mn^{IV}TMP (754 cm⁻¹), [O=Mn^{IV}(OH)TM-4-PyP]³⁺ (711 cm⁻¹),^{13a} or [O=Mn^{IV}(OH)TDMImP]³⁺ (731 cm⁻¹), but significantly lower than five-coordinate triple-bonded O=Mn^V corrolazine or tetraamido complexes (970-981 cm⁻¹).^{4,14} As can be seen, v_{sym} is insensitive to the nature of the meso substituent. Similar observations have been made for structurally related dioxo

[§] Present address: Department of Chemistry, University of Washington, Seattle, Washington 98195.

Table 1. Raman Data for Dioxo Manganese(V) Porphyrins

		Δ (¹⁶ O/ ¹⁸ O)/cm ⁻¹		
manganese porphyrins	ν(¹⁶ Ο)/ cm ⁻¹	half- labeled	fully- labeled	meso-substituents
MnTDCPP ^a	741	21	39	2,6-dichlorophenyl
MnTPFPP ^a	743	26	44	pentafluorophenyl
$MnTMP^{b}$	741	25	44	2,4,6-mesityl
MnTDMImP ^c	744	24	40	N,N-dimethyl-imidazolium-2-yl
MnTM-2-PyP ^c	744	26	41	N-methyl pyridinium-2-yl

^a Solvents: 9:1(v/v) CH₃CN/H₂O, 10 mM TBAH. ^b Solvents: CH₃CN, 10 mM TBAH. ^c Solvents: H₂O, 100 mM NaOH.

Figure 2. Mn–O bond length vs $1/F_{Mn-O}^{1/3}$ (see Supporting Information).

Ru^{VI} porphyrins,¹⁵ while five-coordinate O=Cr^{IV} porphyrins or O≡Mn^V tetraamido complexes are more sensitive to ligand substituents.14,15

The IR spectrum of Mn^VTPFPP afforded strong confirmation of the Raman assignments (Figure 1b). The IR-active but Ramaninactive ν_{asym} for ¹⁶O=Mn^V=¹⁶O was found by band-fitting to be at 805 cm⁻¹. For the half-labeled sample, a prominent new band appeared at 789 cm⁻¹ and an adjacent porphyrin band at 802 cm⁻¹ sharpened significantly (expected half-labeled shift is 15 cm⁻¹). The fully labeled sample displayed a new band at 780 cm⁻¹, also in good agreement with the calculated shift of 29 cm^{-1} .

Taken together, the Raman, IR, and NMR data provide unequivocal evidence for a D_{4h} -symmetric *trans*-dioxoMn^V bonding arrangement in these compounds. Such dioxo complexes have been previously proposed by Su¹⁶ and us^{8b,c} for water-soluble oxoMn^V porphyrins on the basis of the pH-dependence of oxo-transfer rates, DFT calculations, and electrochemical studies.

It is instructive to compare the Mn-O stretching frequencies observed here to those of terminal monooxo-manganese complexes. On the basis of v_{sym} and v_{asym} , the oxo-manganese bond force constant (F) and stretch-stretch constant (k) for $[Mn^{V}(O)_{2}TPFPP]^{-1}$ were determined to be 454 and 67.2 N/m, respectively. Application of Badger's rule^{17a} to the available data produces a very good correlation between F(Mn-O) and the bond length, spanning five Mn oxidation states (Figure 2). Green has recently reported a similarly good correlation for oxoiron(IV) porphyrin complexes.^{17b} As can be seen, the O=Mn^V=O porphyrin appears on the fitted line in the middle of the known range, using the recently reported EXAFS bond length,9,18 consistent with two equivalent manganeseoxygen double bonds.

Dioxo-Mn^VTPFPP⁻, as prepared, is unreactive toward olefins, as we have found for water-soluble Mn^V-porphyrins at high pH.^{8b} However, neutralization of the excess base with 1 equiv of trifluoroacetic acid caused an instantaneous reaction with added cyclooctene at -70 °C. Cyclooctene oxide was formed in 66 \pm 5% yield. Control reactions in the absence of acid yielded no epoxide. When $[Mn^{V}(O)_{2}TPFPP]^{-}$ was half-labeled with $H_{2}^{18}O_{2}$ (in excess H₂¹⁶O), the epoxide product contained 40 \pm 3% ¹⁸O, showing that oxo exchange with bulk solvent is slow compared to the protonation-induced epoxidation reaction.

The low reactivity of dioxo-Mn^V porphyrins can be readily understood to result from the net negative charge on the [Por-Mn^V- $(O)_2$]⁻ unit and, as with other manganates, the need to protonate an oxo-ligand to transfer the other oxygen to the substrate, as we have proposed.8c Charge is a powerful mediator of electrophilic reactivity. MonooxoMn^V corroles, corrolazines, and tetraamides are known to be poor oxygen atom donors because of the tri- or tetraanionic nature of the ligand. Under typically neutral catalytic conditions, dioxo-Mn^V species would be in acid-base equilibrium with the oxo-hydroxo and oxo-aqua forms. OxoMn^V porphyrins bearing no axial ligand [Por-Mn^V=O]^{+ 19} or bearing weak-field ligands, such as hydroxo, are expected to be responsible for substrate oxygenation with high reactivity.

These Mn^V porphryins appear to be the only *trans*-dioxomanganese compounds of any type to be spectroscopically characterized. Trans-dioxo metal complexes are typically found for low-spin d² second or third row metals such as Ru^{VI} and Mo^{IV}. It is apparent that a full understanding of the electronic structure and reactivity of high-valent manganese must include consideration of the transdioxo bonding mode, thus extending the known π -bonding arrangements found in first-row transition metals that were first discussed by Ballhausen and Gray.²⁰

Acknowledgment. Support of this research by the National Science Foundation (Grant CHE 0616633) is gratefully acknowledged.

Supporting Information Available: Experimental details, NMR Raman, and IR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947-(1)3980.
- (2) McGarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563-1602.
- (3) Gross, Z.; Gray, H. B. Adv. Synth. Catal. 2004, 346, 165–170.
 (4) Kerber, W. D.; Goldberg, D. P. J. Inorg. Biochem. 2006, 100, 838–857.
- (5) Parsell, T. H.; Behan, R. K.; Green, M. T.; Hendrich, M. P.; Borovik, S. J. Am. Chem. Soc. 2006, 128, 8728–8729.
- (6) McEvoy, J. P.; Brudvig, G. W. *Chem. Rev.* 2006, *106*, 4455–4483.
 (7) Shimazaki, Y.; Nagano, T.; Takesue, H.; Ye, B. H.; Tani, F.; Naruta, Y.
- Angew. Chem., Int. Ed. 2004, 43, 98-100. (a) Jin, N.; Groves, J. T. J. Am. Chem. Soc. 1999, 121, 2923–2924. (b) Jin, N.; Bourassa, J. L.; Tizio, S. C.; Groves, J. T. Angew. Chem., Int. Ed. 2000, 39, 3849–3851. (c) De Angelis, F.; Jin, N.; Car, R.; Groves, J. T. Inorg. Chem. 2006, 45, 4268–4276. (d) Groves, J. T.; Watanabe, Y.; McMurry, T. J. J. Am. Chem. Soc. 1983, 105, 4489.
- Song, W. J.; Seo, M. S.; George, S. D.; Ohta, T.; Song, R.; Kang, M. J.; Tosha, T.; Kitagawa, T.; Solomon, E. I.; Nam, W. J. Am. Chem. Soc. 2007, 129, 1268-1277.
- (a) Groves, J. T.; Kruper, W. J.; Haushalter, R. C.; Butler, W. M. *Inorg. Chem.* **1982**, *21*, 1363–1368. (b) Groves, J. T.; Takahashi, T. *J. Am. Chem. Soc.* **1983**, *105*, 2073–2074. (10)
- (11) Bernadou, J.; Fabiano, A. S.; Robert, A.; Meunier, B. J. Am. Chem. Soc. 1994, 116, 9375-9376.
- (12) Lahaye, D.; Groves, J. T. J. Inorg. Biochem., published online 2007, http:// dx.doi.org/10.1016/j.jinorgbio.2007.07.017
- (13) (a) Czernuszewicz, R. S.; Su, Y. O.; Stern, M. K.; Macor, K. A.; Kim, D.; Groves, J. T.; Spiro, T. G. J. Am. Chem. Soc. **1988**, 110, 4158–4165. (b) Su, Y. O.; Czernuszewicz, R. S.; Miller, L. A.; Spiro, T. G. J. Am. Chem. Soc. 1988, 110, 4150-4157.
- (14) Workman, J. M.; Powell, R. D.; Procyk, A. D.; Collins, T. J.; Bocian, D. F. Inorg. Chem. 1992, 31, 1548–1550.
 Fujii, H.; Kurahashi, T.; Tosha, T.; Yoshimura, T.; Kitagawa, T. J. Inorg.
- Biochem. 2006, 100, 533-541
- (16) Chen, F. C.; Cheng, S. H.; Yu, C. H.; Liu, M. H.; Su, Y. O. J. Electroanal. Chem. 1999, 474, 52–59.
- (17) (a) Badger, R. M. J. Chem. Phys. 1935, 3, 710–714. (b) Green, M. T. J. Am. Chem. Soc. 2006, 128, 1902-1906.
- (18) It is clear from the data presented herein that the Mn(V) complexes reported in ref 9 are also anionic, D_{4h} -symmetric dioxo species. We suspect that the broad RR bands reported there with smaller isotopic shifts (34 cm^{-1}) are those of O=Mn^{IV}-OH complexes derived from photoreduction (cf. ref 13).
- (19) Zhang, R.; Horner, J. H.; Newcomb, M. J. Am. Chem. Soc. 2005, 127, 6573–6582.
- (20) Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111-122.

JA0761737